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Abstract—Camera-based perception is a central component to
the visual perception of autonomous systems. Recent works have
investigated latency attacks against perception pipelines, which
can lead to a Denial-of-Service against the autonomous system.
Unfortunately, these attacks lack real-world applicability, either
relying on digital perturbations or requiring large, unscalable,
and highly visible patches that cover up the victim’s view. In
this paper, we propose DETSTORM, a novel physically realizable
latency attack against camera-based perception. DETSTORM
uses projector perturbations to cause delays in perception by
creating a large number of adversarial objects. These objects are
optimized on four objectives to evade filtering by multiple Non-
Maximum Suppression (NMS) approaches. To maximize the
number of created objects in a dynamic physical environment,
DETSTORM takes a unique greedy approach, segmenting the
environment into “zones” containing distinct object classes and
maximizing the number of created objects per zone. DETSTORM
adapts to changes in the environment in real time, recombining
perturbation patterns via our zone stitching process into a con-
tiguous, physically projectable image. Evaluations in both simu-
lated and real-world experiments show that DETSTORM causes
a 506% increase in detected objects on average, delaying percep-
tion results by up to 8.1 seconds, and capable of causing physical
consequences on real-world autonomous driving systems.

1. Introduction

Object detection and tracking (ODT) are essential to
perception in autonomous systems (AS), including for
autonomous driving [2], [13], autonomous surveillance [21],
[34], and unmanned aerial vehicles [37]. ODT allows
autonomous systems to identify and track movement of
objects within the environment, such that a correct planning
decision can be made. For example, in autonomous vehicles,
ODT may warn the system about an obstacle on the road, and
the autonomous vehicle may, in return, stop or go around it.

Previous work has extensively explored modifying
the results of ODT through perception attacks. For
example, misclassification attacks [17] alter an object’s
class information to influence a system’s decisions; object

creation [36] creates fake objects that are perceived as real
by ODT; object deletion [9] causes objects to be overlooked
by ODT; and tracker-hijacking [35] alters the movement of
objects over time to trigger a targeted action by a system. All
of these attacks are against the integrity of an autonomous
system, changing the output of ODT to suit an attacker’s goal.

However, recent work has proposed attacks against
the availability of autonomous systems, through latency
attacks [11], [30], [32], [44], [49]. These attacks seek Denial-
of-Service against ODT, preventing it from appropriately
yielding decision-making results. They used adversarial per-
turbations to create a large number of artificial objects, posi-
tioned and sized to evade non-maximum suppression (NMS).
NMS, positioned between object detection (OD) and object
tracking (OT), seeks to filter out duplicate bounding boxes by
removing lower-confidence bounding boxes that overlap with
high-confidence bounding boxes. Yet, by forcing an O(n2)
number of comparisons with a mass of non-overlapping,
non-removable fake objects, NMS is slowed down. With
delayed perception results, the previously proposed integrity
defenses that require perception results to operate are unable
to mitigate these kinds of attacks (Section 9).

Unfortunately, previous latency attacks are not physically
feasible, as they require perturbing unalterable areas
like the sky or using large patches that obscure much
of the camera view, limiting scalability. They are also
sensitive to environmental conditions; for instance, attacks
generated with dark-colored buildings do not transfer well
to bright-colored ones (Section 3.1). Further, these attacks
are impractical in real-time or dynamic environments, as
generating a single adversarial example can take 22–39
minutes [49]. Finally, prior attacks target only one version
of NMS, overlooking other popular implementations.

In this paper, we introduce DETSTORM, the first physical
latency attack against camera-based perception. DETSTORM

increases victim latency by creating a large number of objects
on all physically perturbable surfaces in the environment,
which causes a large number of inter-object comparisons
for NMS and object tracking. Using a camera to map the
surrounding environment, DETSTORM first leverages depth-
wise separable convolutions to separate the input camera



frame into unique “zones”, each containing a distinct class
(e.g., pedestrians, cars, roads). DETSTORM takes a greedy ap-
proach and maximizes the amount of created objects for each
zone, as opposed to previous approaches that increased the
number of objects in the entire image space. Next, DETSTORM

uses a pre-generated perturbation dictionary which contains
universal adversarial patches capable of attacking each type
of perturbable zone. We create the perturbation dictionary
using a new loss function that optimizes four separate objec-
tives to allow our attack to generalize well to several NMS
approaches. Finally, we create a zone stitching algorithm
to adapt our attack to environmental changes in real time,
combining multiple perturbations from our dictionary into
a unified pattern that can be projected to launch the attack.

We evaluate our attack through simulated physical
experiments on the BDD100K dataset [55] and through
real-world autonomous driving experiments, measuring
latency increases and object counts across five GPU models,
including visual computing platforms, embedded boards,
and an autonomous vehicle’s hardware stack. We assess
attack transferability across various object detection, NMS,
and tracking methods and examine the impact of victim
system settings (e.g., NMS confidence threshold), available
attack surfaces, and camera-surface angles. Finally, a case
study on Autoware [27] demonstrates the potential physical
impact of DETSTORM on a fully autonomous driving system.

Our evaluation shows that in simulated experiments,
DETSTORM increases object counts by 506%, with latencies
170% higher than prior work [44]. In real-world experiments,
DETSTORM achieves latencies up to 8.1 seconds without
printed patches, 259.62× the maximum achieved by previous
attacks [49]. We reach 100% transferability to DIoU [59] and
Confluence [45] NMS, and retain 100% of created objects
across single- and two-stage tracking methods. DETSTORM is
effective regardless of victim-tuned parameters (Section 6.4)
and evades existing defenses (Section 9). Finally, DETSTORM

induces collisions in simulation experiments against Auto-
ware [27] by introducing latencies of 0.27+ seconds.

Our contributions can be summarized as follows:

• We introduce DETSTORM1, the first end-to-end physi-
cal latency attack against camera-based perception.

• We formulate a novel greedy approach for latency
effects in dynamic physical environments, leveraging
depthwise separable convolutions to maximize object
creation on all perturbable surfaces.

• We conduct the most comprehensive NMS attack eval-
uation to date, across a digital dataset, real-world ex-
periments, and an autonomous driving simulator, mea-
suring effectiveness on seven object detection models,
four tracking models, and three NMS algorithms.

2. Background

As depicted in Figure 1, camera-based perception
pipelines commonly include object detection, non-maximum

1. Available at https://github.com/purseclab/DetStorm
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Figure 1: An overview of a camera-based perception pipeline.

suppression, and object tracking. First, given video input,
object detection quickly identifies objects in each frame,
creating redundant bounding boxes in the process. NMS
then filters these to retain the highest-confidence box per
object. Next object tracking links these bounding boxes
across frames, ensuring spatio-temporal consistency and
providing object tracks with velocity and unique IDs. This
data, along with object classes, feeds into global planning
and sensor fusion, which pass information to the control
module for system actuation (e.g., throttle, brake, and steer
for vehicles, alerts for surveillance).
Object Detection. Autonomous systems begin perception
with object detection. Although there are many types of archi-
tectures, including the growing interest in transformer-based
approaches [14], CNNs remain more commonly deployed
for object localization and classification. Object detection
involves three key steps. First, during pre-processing, resizing,
normalization, and data augmentation prepare the input
image. Second, during inference, a trained model detects
and classifies objects, producing bounding boxes and class
probabilities. Finally, during post-processing, techniques like
non-maximum suppression (NMS) refine the output and re-
move redundant boxes, resulting in the final detected objects.
Non-Maximum Suppression (NMS). NMS is essential in
object detection, with a recent survey reporting that 11 of
12 OD models rely on it to refine results [29]. NMS filters
duplicate bounding boxes from OD. In the most common
approach, vanilla NMS, this is done in three steps. First,
objects are grouped together in their own coordinate spaces
by class, to prevent objects of different classes from being
considered as the same object. Next, bounding boxes are or-
dered based on their confidence scores. To save computations,
objects with confidence scores below confidence threshold
Tconf are discarded. Additionally, if the number of objects
exceeds the proposal number threshold Tprop, only the first
Tprop detections ordered by confidence are kept. Finally, the
highest-ranked bounding box is selected, and its Intersection
over Union (IoU) with remaining boxes is calculated.

If no boxes are removed, NMS requires up to O(n2)
computations, where n is the total bounding box count.
Lastly, boxes with IoU above a similarity threshold TSim

(e.g., 0.5) are discarded. This process repeats until vanilla
NMS outputs the highest-confidence boxes per object.

Two popular alternative NMS metrics are DIoU [59] and
Confluence [45]. DIoU measures bounding box similarity
via centroid distance, with box pairs under an L2 distance

https://github.com/purseclab/DetStorm


of TSim considered the same object. It outperforms vanilla
NMS by 1.22% to 3.14% in crowded scenarios. Similarly,
Confluence uses a confidence-weighted Manhattan Distance
to measure similarity, reducing false positives and achieving
2.5% to 3.6% higher average precision than vanilla NMS.
Object Tracking. After objects are classified, object
tracking assigns unique identities to objects between frames,
estimating their trajectories. Broadly, there are two types of
object tracking approaches: two-stage trackers like SORT [5]
use detection results for association and motion estimation,
while one-stage trackers like Siamese tracking [4] track
objects based on appearance. Object tracking is split into
three steps. First, in detection, a Kalman Filter predicts
object movement between frames, creating “trackers”.
Next, in association, OD boxes are matched with trackers
using the Hungarian method. Finally, in post-processing,
trackers are adjusted or removed, and velocities are assigned.
Because each detected object must be associated with a
tracker, object tracking, similar to NMS, requires O(nm2)
comparisons, where n is the number of detected objects and
m is the number of generated trackers.

3. Previous Attacks and Challenges

3.1. Latency Attacks

Previous work on latency attacks exploits the observa-
tion that generating numerous bounding boxes resistant to
NMS elimination (e.g., low IoU in vanilla NMS) can slow
perception processing by increasing comparisons in NMS.
Daedalus [49] (DS) pioneered latency attacks, using adversar-
ial examples against vanilla NMS to achieve extensive image-
wide perturbation. Unfortunately, DS’s physical attacks (at-
tempted via printed patches) are not feasible: DS patches are
non-transferable between images and require 22–39 minutes
to generate, making them impractical for dynamic environ-
ments. Thus, if the environment changes in any way while
the attack is being conducted (as is common in real world set-
tings), the generated patch is no longer applicable. To combat
this, DS attempts to create a large patch (e.g., 21.5 cm x 21.5
cm) positioned within 1.8 meters of the camera. However,
these patches are highly visible and unsuitable for use against
moving vehicles. Moreover, DS’s reported maximum physical
latency of 0.03 second falls well within the acceptable end-
to-end latency of 0.1 second for autonomous vehicles [28].

The next attack, Overload [11] (OL), improved on DS
by proposing a spatial attention metric, that prioritizes
bounding box creation in less occupied areas to reduce
overlap. Although OL generates over 24, 000 objects against
YOLOv5s, it requires 3 minutes to generate a single attack
sample and is only demonstrated digitally with perturbations
across the entire image. Meanwhile, Phantom Sponges [44]
(PS), advances latency attacks using universal adversarial
perturbations (UAP) to apply a single pattern across
multiple images, removing generation time. Given attack
source images, PS creates a pattern that induces numerous
bounding boxes in similar images, achieving a 45% increase
in detection time on vanilla NMS. Unfortunately, our

Table 1: Comparing DETSTORM with other latency attacks.
DS [49] PS [44] OL [11] SL [30] ST [32] DETSTORM

Full AS Pipeline ✗ ✗ ✗ ✗ ✓ ✓

Physically Realized ✗† ✗ ✗ ✗ ✗ ✓
OT Transferability ✗ ✗ ✗ ✗ ✓ ✓
NMS Transferability ✗ ✗ ✗ ✗ ✗ ✓

Real-time Adaptability ✗ ‡ ✗ ✗ ✗ ✓

† Daedalus’s physical attack is not successful in creating significant latencies [28].
‡ PS’s adaptability is limited by the appearance of the samples in UAP generation (Sec 3.1).

experiments reveal PS’s effectiveness depends heavily on the
source images used. As shown in Appendix Figure 13, UAPs
generated from dark images are limited to dark surfaces
(e.g., roads, shadows), indicating that they are not strictly
universal and require adaptation to the target environment.

Other works include SlowLidar [30] (SL), which ex-
tends digital latency attacks to 3D LiDAR detection, and
SlowTrack [32] (ST), which applies PS concepts to object
tracking. ST is the first to show that in a full ODT pipeline,
generating many objects to slow NMS also hinders tracking,
as OT requires comparable or more comparisons than NMS.
However, ST’s approach requires perturbing the entire image,
impractical for physical attacks where some regions (e.g.,
sky) cannot be perturbed. Additionally, ST generates attacks
for each video frame (except the first), adding significant
overhead in real-time dynamic environments.

We compare DETSTORM with previous latency attacks
in Table 1. First, previous attacks are either digital or
fail in real-world patch-based scenarios. DETSTORM is the
first work to use projector-based physical perturbations for
latency attacks. Next, unlike previous attacks, which target
only vanilla NMS, DETSTORM transfers across multiple
NMS algorithms, including DIoU and Confluence, without
performance loss. Finally, DETSTORM is the first to adapt
its perturbations in real time to changing environments.

3.2. Design Challenges

To perform physical latency attacks on ODT, we address
four unique challenges not considered in previous works.
(C1) Constraints on Attack Surfaces. Unlike digital attacks,
not all surfaces in the real world can be perturbed, e.g., the
sky. One approach to address this challenge is to create one’s
own attack surfaces, e.g., by using a monitor or a paper
printout as a patch that can be displayed where the attacker
wants. However, previously proposed approaches required the
patch to cover most of the camera’s field of view and obscure
other objects [49]. This is a very strong attack assumption,
as an attacker capable of obscuring the victim’s field of view
would be able to arbitrarily cause a desired effect (e.g., simply
covering the camera to remove perception results). Addition-
ally, such an attack would be highly visible, since it requires
a patch to be either extremely large or extremely close to
the victim’s camera. Instead, a physical attack must be able
to utilize as much of the available environment as possible,
without relying on an attacker-controlled surface.

Another approach explored in previous work [35] is
to map the perturbable surfaces in the environment with
a LiDAR point cloud. However, this method does not
capture information about the appearance of the mapped



surfaces, which is an important factor in the success of
latency attacks. For example, dark-colored objects like roads
respond differently to latency-inducing perturbations than
bright-colored objects like street signs (Section 3.1). Thus,
an attacker must be able to reason on not only the topology
of the surfaces in the environment, but also their semblance.
(C2) Maximizing Latency Effects. In the physical domain,
attack surfaces are limited. Therefore, maximizing object
creation on available surfaces is crucial. Unlike digital
attacks such as ST and OL, which spread created objects
across the entire image, physical attacks must create flexible
perturbations to avoid limiting the effect to specific surfaces.
(C3) Competing Light Sources. Traditionally, perturbations
in the digital domain are made to be as small in magnitude as
possible, to be less perceptible to a casual observer. This ap-
plies doubly in the physical domain, where realizing a greater
perturbation magnitude requires a more powerful and expen-
sive projector [33]. However, unlike in the digital domain,
physical projector perturbations must compete with surround-
ing light sources, which means that perturbations must not be
so subtle that they can be easily overwhelmed by changing
lighting conditions. These two opposing factors must be
balanced against each other for a successful physical attack.
(C4) Real-time Adaptation. Physical environments change
quickly. For example, a vehicle, pedestrian, or other object
may suddenly move across the camera’s field of view, altering
both available attack surfaces and the appearance of the scene.
Previous attacks focused on generating perturbation patterns
separately as each image frame is received, a process which
can take a few minutes [11] or up to half an hour [49]. Other
works [32] propose the use of Expectation over Transfor-
mation [1] to convert their digital attacks to physical patch
attacks, but this requires optimizing over a distribution of
transformations and is computationally expensive. With phys-
ical environments that can change within the span of a second
(e.g., those encountered in autonomous driving), a physical
attack must be able to update its perturbation pattern to match
environmental changes within these small spans of time.

4. Threat Model

We consider an adversary launching a latency attack
against camera-based perception in autonomous systems,
aiming to overload ODT algorithms with numerous
objects to slow processing. The attacker has access to
their own camera for real-time environmental information
and a projector for perturbations. We primarily evaluate
attackers with white-box knowledge of the victim’s object
detection model (e.g., determined via the victim’s technical
specifications), examining black-box knowledge of OD in
Section 6.3. However, we assume black-box knowledge of
OT or NMS algorithms, as DETSTORM ’s objective function
generalizes across different approaches for both.

We physically conduct attacks with projector-based
perturbations, as detailed in Section 6. These attacks
must comply with physical constraints, such as limited
perturbable surfaces, projector brightness, and competing
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Figure 2: Illustration of DETSTORM’s stages.

light sources. Physical access to the victim’s hardware is
not considered, as this would trivialize the attack [19].

5. Physical Latency Attacks

We present DETSTORM, a physically launchable latency
attack against ODT. Figure 2 presents the stages of DET-
STORM. To begin, the attacker requires a camera ( 1 ) for
environmental mapping and an attacker dataset ( 2 ) to gener-
ate perturbations. Next, the perturbation dictionary is created
offline, before the attack is conducted. The attacker dataset,
which can either be a public dataset (e.g., BDD100k [55])
or collected directly from the attack environment, is first
passed through zone isolation ( 3 , Section 5.1), which uses
depthwise separable convolutions to split images or videos
into zones, with one zone for each perturbable class in a zone-
isolated frame. Classes that are known not to be perturbable
(e.g., sky, windows) are ignored. Therefore, the combination
of all zones for an isolated frame represents the perturbable
parts of the image, which addresses challenge C1. Next, the
zone-isolated dataset is passed into perturbation optimiza-
tion ( 4 , Section 5.2.1), which maximizes the amount of
objects in each perturbable area and addresses challenge
C2. During perturbation optimization, we continuously query
an object detector ( 5 ) to update our perturbation pattern
over a set number of iterations. To adapt to a variety of
environmental lighting conditions, we allow our noise to
remain unbounded, but we minimize its intensity to preserve
stealthiness. addressing challenge C3.

When optimization is complete, we store the perturbation
patterns for each zone in our perturbation dictionary ( 6 ).
During the attack runtime, DETSTORM first takes the input
frame ( 7 ) from the attacker camera, runs it through zone
isolation, and returns the segmented frame ( 8 ) containing
each perturbable zone. Next, these zones are queried
against the perturbation dictionary, which returns one
perturbation pattern per zone ( 9 ). Finally, in order to adapt
the perturbations to changes in the environment, our zone
stitching algorithm ( 10 , Section 5.2) unifies the perturbation
patterns to match the layout of the environment in real time,
addressing challenge C4. The unified pattern is displayed
via a projector to effect the attack ( 11 - 12 ).



5.1. Zone Isolation

Previous latency attacks seek to maximize the amount
of created objects over an entire image. Unfortunately, this
approach is not viable in a physical attack; some parts of
the image may not be perturbable, and therefore objects
cannot be created there. To address this, we split the image
into perturbable zones, and maximize the amount of created
objects for each. By induction, this also maximizes the total
amount of objects for all perturbable areas in the image.

We define a “zone” as the region of an image frame
that belongs to one of 119 classes that we reason can reflect
projector perturbations (e.g., cars, pedestrians, buildings,
roads, and animals). We detail all perturbable classes and
their frequency within the BDD100K dataset in Appendix A.

To segment an image frame into zones, we train an
Xception model [12] on ADE20K segmentation data, which
contains a diverse amount of scene examples from various
domains. Our aim is to achieve real-time performance (20-30
fps) with a complex model structure, prioritizing speed over
maximizing accuracy, which is imperative for zone stitching
(Section 5.2.2). Specifically, we employ depthwise separable
convolutions of the form:

Depthwise(X,Wd)i,j,d =

Din∑
k=1

Xi,j,k ∗Wd,k, (1)

where Din is the number of input channels, Xi,j,k is the
input activation at (i, j) for channel k, Wd is the depthwise
convolutional filter for channel d, and ∗ is the convolution
operation.The output of the depthwise convolution, with Dout
channels, is then passed to a pointwise convolution, which
performs a 1× 1 convolution across all channels via:

Pointwise(Y,Wp)i,j,d′ =

Dout∑
d=1

Yi,j,d ∗Wp,d,d′ , (2)

where Yi,j,d is the output of depthwise convolution at (i, j)
for channel d, and Wp is the pointwise convolutional filter.

Given an image frame I from our attacker camera,
the model applies Equations 1 and 2 to output an array
of zones Z = [z1, z2, ..., zn], with class information and
a mask encoding which parts of the image the zone is
located in. These are passed as output to the perturbation
dictionary, which assigns relevant perturbation patterns to
each zone. Every time a new frame is received, this process
is repeated, ensuring that, as the attacker continuously maps
the surroundings using their camera, the attack updates the
zone and class information to match the environment.

5.2. Creating Latency

To create the perturbation dictionary, we generate
universal adversarial perturbations for all 119 zone types.
We first partition the dataset (e.g., BDD100K [55]) via
zone isolation into zone-specific folders (e.g., “person”
for pedestrian zones, “car” for car zones). Each folder’s
zones are batched according to system memory constraints

(e.g., batch size of 100 for high-memory systems, 10 for
low-memory systems), and these batches are passed to
perturbation optimization for noise generation.

5.2.1. Perturbation Optimization. To optimize perturba-
tions for a given batch, we use projected gradient descent
(PGD), minimized by the L2 norm to reduce perturbation
amount and enhance attack effectiveness (Section 6.4). Our
loss function maximizes created bounding boxes while mini-
mizing L1 distance, L2 distance, and intersection for each
pair of boxes, ensuring evasion of various NMS approaches.
Maximizing Created Objects. To cause latency effects, we
create a large number of objects that must be processed
in O(n2) to O(n3) time by NMS and OT. To avoid being
filtered by NMS, the created objects must have a confidence
score greater than the victim’s confidence score threshold
Tconf. Thus, the attacker first provides a target confidence
threshold T ′

conf that the created bounding boxes aim to
achieve. Ideally, T ′

conf should be set to Tconf if the value is
known or can be estimated. However, the attack can remain
effective even when T ′

conf ̸= Tconf (Section 6.4).
Next, for each bounding box B created by the perturba-

tion, we minimize the loss function:

ℓconf = max (T ′
conf −Bconf, 0) , (3)

where Bconf is the confidence score of the created bounding
box. Equation 3 maximizes Bconf with respect to T ′

conf, while
no incentive is given to increase Bconf past T ′

conf. With this,
we ensure that, over multiple objects, the loss function favors
increasing the confidence of objects below the threshold,
rather than increasing the confidence of objects above it.

Let Cb be the set of candidate bounding boxes before
applying the confidence threshold and Ca be the candidates
after. We maximize the amount of created bounding boxes
by minimizing the following loss function, over all objects:

ℓmax_obj =
1

|Cb|
∑

B∈Ca

ℓconf(B). (4)

We design Equation 4 so that the loss is minimized as the
number of created objects where Bconf ≥ T ′

conf increases.
Minimizing L1 Distance. The Confluence [45] approach
filters out repeated bounding boxes based on an L1 distance
metric. To combat this, we would like to minimize the L1
distance between our created bounding boxes. Let d1(i, j)
be the L1 distance between boxes i and j given by:

d1(i, j) = |xi − xj |+ |yi − yj |, (5)

where (xn, yn) represents the centroid coordinate of the
bounding box n. Let α and β be the coordinates of the upper
left and bottom right corners of the current zone, respectively.
We minimize L1 distances between all pairs of created boxes
through the loss function:

ℓl1 =
∑
∀Cb

d1(Cb(i), Cb(j)) ·
1

|Cb| · d1(α, β)
, (6)

which reduces the average L1 distance calculated over all



created objects. We weight this value based on the size of
the entire zone d1(α, β). Intuitively, given the same number
of created objects, a larger zone is more likely to have a
higher average L1 distance with created objects compared to
a smaller zone, thus we adjust the loss function accordingly.
Minimizing L2 Distance. DIoU computes the NMS overlap
based on the L2 distance between the bounding boxes,
reasoning that objects whose centroids are farther apart are
more likely to be different objects [59]. Although reducing
L1 distance via Equation 6 indirectly reduces the L2 distance
as well, it does not account for potential outliers. Therefore,
given the function

d2(i, j) =
√

(xi − xj)2 + (yi − yj)2, (7)

we directly minimize L2 distances between created bounding
boxes with:

ℓl2 =
∑
∀Cb

d2(Cb(i), Cb(j)) ·
1

|Cb| · d2(α, β)
(8)

Similar to L1 distances, L2 distances are minimized as an
average over all objects, weighted by the size of the zone
to account for larger zones corresponding to larger average
L2 distances among bounding boxes.
Minimizing Intersection. Independent of any IoU method-
ology, it is intuitive that objects with a low intersection are
less likely to be the same object since they do not occupy
the same space. This principle is applied either directly or
indirectly by vanilla NMS, DIoU, and Confluence. Therefore,
we seek to minimize the intersection between the bounding
boxes created in our loss function.

Given two bounding boxes Bi and Bj , with coordinates
in the form B = (X1, X2, Y1, Y2), where (Xn, Yn) encodes
the coordinate for either top left point (n = 1) or the bottom
right point (n = 2), we first compute the maximum extents
on each axis:

X(a,b) = max
(
X(1,2)(Bi), X(1,2)(Bj)

)
,

Y(a,b) = max
(
Y(1,2)(Bi), Y(1,2)(Bj)

)
,

(9)

With these, we compute the intersection of Bi and Bj with:

∩(Bi, Bj) = |max(Xb −Xa, 0) ·max(Yb − Ya, 0)| . (10)

Using Equation 10, we formulate a loss function that
minimizes the intersection on all created objects:

ℓinter =
max (∩(Bi, Bj) ∀Bi,j ∈ Cb)

α · β
, (11)

which reduces the maximum intersection between any two cre-
ated boxes, normalized according to the size of the zone. This
design ensures that instead of seeking small reductions in
intersection over multiple objects, the loss function attempts
to target the two bounding boxes with highest intersection
and reduce their overlap. This helps the loss function ignore
bounding boxes with already minimized intersections and
focus on the objects most at risk of elimination.
Final Loss Function. To create the final perturbation pattern
P for each zone, we minimize a loss function by combining

Algorithm 1 Creating a final perturbation pattern from zones.
Input: Set of input zones Z = [class,mask] ∀ zones, Set of perturbations

ρ ∀ Z, Image width and height (Iw, Ih).
Output: Final perturbation pattern to project.
1: function STITCH_ZONES(Z, ρ, (Iw, Ih))
2: return_image = zeroes(Iw, Ih, 3)
3: for class, mask in Z do
4: current_pert = ρ(class)
5: cubic_interpolate(current_pert, (Iw, Ih))
6: for rgb_channel in current_pert do
7: current_pert(rgb_channel) *= mask
8: end for
9: return_image += current_pert

10: end for
11: return return_image
12: end function

our four loss functions into a single equation:

ℓ = min
P

[
λ1 · ℓmax_obj + λ2 ·

ℓl1 + ℓl2 + ℓinter

3

]
, (12)

where λi is a weighting factor set by hyperparameter tuning
(See Section 6.1). Over an attacker-specified number of itera-
tions, we compute a gradient over the object detection model
and update P via back-propagation. When completed, we
store the optimized pattern P in the perturbation dictionary
for use against future examples on the same class of zone.

5.2.2. Zone Stitching. To adapt to changes in the envi-
ronment in real time, perturbations from our perturbation
dictionary need to be selected and stitched together into
a single, contiguous region that matches the environment.
This also handles the conversion of digital perturbations to
physical, projectable patches that can be displayed by our
projector. Algorithm 1 outlines our zone stitching process.
First, it leverages zone isolation (Section 5.1) to distill the
layout of the environment into a set of regions Z, encoding
the class and area of each zone in the image. Next, it takes
the set of corresponding perturbations ρ from the perturba-
tion dictionary generated during perturbation optimization
(Section 5.2.1). Lastly, it takes the attacker camera’s width
and height to size the final perturbation properly.

The algorithm starts with a completely blank
return_image, represented by an array of zeroes
encompassing the image’s width/height along with all three
RGB channels (Line 1). Next, for each class and mask in the
input zones (Line 3), we take the corresponding perturbation
pattern current_pert from ρ and resize it to the full
image size via cubic interpolation (Lines 4-5). To constrain
the perturbations to the zone’s physical bounds, we multiply
each channel in current_pert by the attack mask and
add it to the return_image (Lines 6-9). This populates
return_image with the perturbation pattern of each zone
over each iteration, until each zone’s perturbation pattern
has been layered onto the blank image, encompassing all
perturbable regions. This final pattern is returned (Line 11)
and projected directly onto the environment, snapping to
the correct surfaces and effecting the attack.



6. Evaluation

We evaluate DETSTORM against a full ODT stack includ-
ing OD, NMS, and OT. For OD, we select YOLOv5 [26],
which remains both the most widely used OD algorithm [20]
and one of the fastest in terms of latency [10]. Additionally,
we evaluate DETSTORM against four different OT algo-
rithms (SORT [5], StrongSORT [16], OC-SORT [8], and
SiamMOT [47]) along with three different NMS algorithms
(vanilla, DIoU [59], and Confluence [45]). Using these
models, we perform (1) simulated physical attacks enforcing
real-world constraints against the BDD100K autonomous
driving dataset [55], and (2) real-world physical attack
experiments with a camera, projector, and real-world vehicles.
We compare the success of our attacks with previous work
(Section 6.2), the transferability of the attack to other OD
models (Section 6.3), and the effect of victim-configured or
environmental parameters on the attack (Section 6.4).

6.1. Attack Scenarios and Setup

Domain. For our experiments, we focus on the autonomous
vehicle domain, where latency effects are the most safety
critical and can result in collisions (Section 7). However,
our attack is equally applicable to other domains, including
autonomous surveillance (where latency can cause frames to
be ignored for the duration of the attack, potentially disguis-
ing unauthorized entry [50]) and mobile robot navigation
(where latency for delivery robots [43] may cause service
delays, or cause them to ignore objects on the road).
Datasets and Models. We evaluate our attacks against 1000
randomly selected examples from the BDD100K dataset [55],
covering diverse driving scenarios. Additionally, we use
image frames from BDD100K to create the perturbation
dictionary (Section 5.2). For ODT, our focus is on YOLOv5
and SORT, as they are the most widely used model
combination to date [20]. For the same reason, we evaluate
attack effectiveness with vanilla NMS (Section 6.2). However,
in Section 6.3, we assess DETSTORM on other OD/OT/NMS
approaches. We evaluate Vanilla NMS using Ultralytics’
default YOLOv5s implementation [26]. To evaluate DIoU,
we repurpose the official DarkNet implementation of the
metric [58] for our YOLOv5s model. These NMS imple-
mentations all run on the GPU via PyTorch. Confluence and
the four object tracking algorithms are evaluated using their
respective Python implementations [5], [8], [16], [46], [47].
Testing Hardware. We evaluate the effectiveness of our
attacks on various hardware, since the observed latency of a
given attack is primarily dependent on the GPU. We test la-
tency effects on five different GPUs. The first three, NVIDIA
RTX 2080 Ti, NVIDIA RTX 3070, and RTX 3080, are pro-
fessional visual computing platforms, which are common in
testing latency attacks against AD in previous work [30], [32].
The other two, NVIDIA Jetson Nano and NVIDIA Jetson
TX2, are embedded edge-device GPUs commonly used in a
wide variety of autonomous systems, including video surveil-
lance, robotic vehicles [39]. We ran our experiments with
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Figure 3: Latency distribution achieved by Phantom Sponges
and DETSTORM across all hardware. DETSTORM is able to
consistently achieve latencies beyond PS’s top performance.

12th Generation Intel CPUs and 32GB of RAM, except for
the Jetson devices which used their own CPU and 8GB RAM.

For real-world experiments, we used a real-world
DataSpeed autonomous vehicle [24] (Appendix Figure 14),
which is equipped with our RTX 2080 Ti GPU. The onboard
camera recorded our attacks at 30 FPS in 1920 × 1080
resolution. To ensure safety, a human operator remained
in control of the vehicle at all times, with the attack effect
being measured via replayed data while the vehicle was
stationary. This also allowed us to measure the effect of
the same attacks under different GPUs. To conduct the
attack, perturbations were generated on a laptop with an
Intel i5-9300H CPU/NVIDIA GTX 1650 GPU/8GB RAM
and effected via an Optoma LV130 projector [40]. On this
setup, the runtime of the DETSTORM online perturbation
loop averaged 28.796 fps, ranging between 22 and 30 fps,
with zone isolation consuming 97%–97.8% of runtime,
dictionary queries 1%, and stitching 1.2%–2%.
Real-world Latency Attacks. We conduct 34 real-world
attacks with our DataSpeed autonomous vehicle, in
residential and commercial areas. 15 attacks were done in
daytime. We prioritized safety during these experiments,
choosing times and locations to minimize third-party
traffic conditions and using personnel with experience in
autonomous vehicle experiments. Our experiments were
conducted with permission from the local police, and local
patrol officers were notified of our activities.
Comparison Baselines. We compare our attack against the
Phantom Sponges attack [44]. To our knowledge, it is the
only work whose implementation is both publicly available
and complete (i.e., the effects described in the original work
are reproducible). We generate a Phantom Sponge UAP on
the BDD100K images dataset, the same source we use for
generating the perturbation dictionary. We use the settings
and hyperparameters recommended by the authors.
Implementation Details. For our evaluation of attack success
in Section 6.2, we adopt the default settings of the official
implementations of each model. We evaluate the effect of
changing these settings in Section 6.4. We set T ′

conf = 0.25, a
common value in NMS implementations. For our perturbation
generation loss function, we set λ1 = 1 and λ2 = 5, where
both values are tuned to optimal via grid search.
Evaluation Metrics. For simulated physical attacks where
attacked examples can be compared against a ground truth
baseline, we use two different metrics to measure the
effectiveness of our attack:

(1) Rate of Increase in Objects (ROI-O) measures the
relative increase in number of final objects processed by the



Table 2: Attack performance of DETSTORM during simulated
physical experiments. DETSTORM can cause up to 92.5×
increase in latency and achieves max latencies well above
the 0.1 second safety threshold [28].

Hardware ROI-O
(Avg/Max)

ROI-L
(Avg/Max) Max Latency (s)

Jetson Nano 51.6 / 61.7 4.38
Jetson TX2 49.4 / 51.22 3.8

RTX 2080 Ti 5.06 / 20.71 53.33 / 75.88 1.52
RTX 3070 1.74 / 2.49 0.5
RTX 3080 21.33 / 92.5 0.4

perception pipeline when attacked, in the form:

ROI-O =
Object_Num(x∗)− Object_Num(x)

Object_Num(x)
(13)

(2) Rate of Increase in Latency (ROI-L) measures the
relative increase in total runtime of the perception pipeline
when attacked, in the form:

ROI-L =
ODT_Latency(x∗)− ODT_Latency(x)

ODT_Latency(x)
, (14)

Where, for both metrics, x is an input with no perturbations,
and x∗ is the same sample that has been attacked.

ROI-L is hardware-dependent and may change based on
the victim’s platform, while ROI-O is hardware-independent
and can be used as a rough measure of expected latency
based on the number of created objects. Thus, the most
important metrics for an attacker to achieve are ROI-O (for
hardware-independent effects), and maximum latency, which
will lead to effects for the victim. The exact value at which
a maximum latency will cause physical effects increases as
speed and distance between vehicles decreases (Section 7).
However, a max latency above 0.1 second has been deemed
unsafe in the autonomous driving domain [28].

6.2. Attack Effectiveness

Simulated Physical Attacks. To evaluate DETSTORM’s effec-
tiveness across diverse conditions and compare it with the dig-
ital Phantom Sponge baseline, we directly apply DETSTORM’s
perturbations and a Phantom Sponge UAP to BDD100K
video data. To simulate physical constraints, both attacks are
bound to the same physically perturbable regions. Addition-
ally, the maximum perturbation amount ϵ was restricted to 70
for both attacks, although both attacks are capable of achiev-
ing a much lower perturbation amount during optimization.

Table 2 showcases the DETSTORM on YOLOv5s, with
vanilla NMS and SORT tracking. For comparison, Appendix
Table 7 illustrates the performance of Phantom Sponges on
the same setup. We find that DETSTORM easily clears the
0.1 second safety threshold and outperforms the Phantom
Sponges attack in all areas, having a 4% greater average
ROI-O, and having between 55.36% and 410.29% higher
ROI-L. This proves that, for the same environments with the
same objects, DETSTORM is able to create more objects and
longer latencies, regardless of victim-deployed hardware.
Notably, although the maximum number of objects produced

(a) BDD100K. (b) Right turn (c) Drive in (parking)
Figure 4: DETSTORM’s latency attack (a) against BDD100K
and (b) in the real world as the victim turns right, and (c)
in the real world as the victim pulls in to park.

Table 3: DETSTORM latencies in physical experiments.
Hardware Avg Latency (s) Max Latency (s) Benign Latency (s)†

Jetson Nano 7.17 (× 55.15) 8.1 (× 62.3) 0.13
Jetson TX2 3.2 (× 29.1) 6.05 (× 55) 0.11

RTX 2080 Ti 1.79 (× 28.96) 3 (× 48.54) 0.0618
RTX 3070 0.1753 (× 5.05) 0.6 (× 17.29) 0.0347
RTX 3080 0.1749 (× 13.25) 0.56 (× 42.42) 0.0132

† Benign latency based on average performance on unaltered BDD100K dataset.

by DETSTORM is only 1.37% higher than PS, DETSTORM

produces between 40% and 300% higher maximum observed
latencies, demonstrating that DETSTORM’s created objects
are more efficient at creating latency. Finally, Figure 3 shows
the distribution of latencies achieved by both Phantom
Sponges and DETSTORM. DETSTORM has a large upper
quartile skewed towards higher latencies, which far exceeds
the maximum and outliers of Phantom Sponges. By being
able to effect higher latencies, DETSTORM is able to cause
physical consequences for a wider variety of conditions.

Among our RTX GPUs, the RTX 2080 Ti, mounted to
our real vehicle, has the highest observed latency at 1.52
seconds, whereas our most powerful RTX GPU (RTX 3080)
has the lowest observed latency (0.4 seconds). Meanwhile,
on the embedded Jetson edge-devices, even higher latencies
are achieved, up to 4.83 seconds for the Jetson Nano and 3.8
seconds for the Jetson TX2. The higher maximum latency and
ROI-L in these devices demonstrates their difficulty to scale
to high object densities, due to the processing constraints in
both their lower GPU throughput and more limited RAM.

Yet, we note that the ROI-L is not necessarily correlated
with the maximum latency. For example, the highest DET-
STORM ROI-L is observed under the RTX 2080 Ti, with an av-
erage increase of 53.33 times the benign latency. However, it
has a lower maximum latency than both the Jetson Nano and
Jetson TX2. This occurs because some GPUs (e.g., RTX 2080
Ti) are extremely fast under low object density, but experience
more extreme latency spikes under high object density. Thus,
although the maximum observed latency roughly correlates
with GPU throughput, the relative rate of increase in latency
is more tied to memory access efficiency [38].

Figure 4-a illustrates the effect of a DETSTORM attack
against BDD100K. Both perturbations and the attack’s effect
are limited to physically perturbable regions (e.g., walls,
vehicles, and passing pedestrians). A large number of
objects are created on these surfaces, creating the latency
effect against perception.
Real-world Attacks. To evaluate the effect of DETSTORM

on real-world automotive vision tasks, we use a projector
to physically perturb a variety of outdoor environments. We
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Figure 5: The responsibility of each module for latency
effects, measured via (a) percentage of total latency over all
simulated physical/real-world experiments, and (b) averaged
over digital experiments as a function of ROI-O.

choose both residential and commercial environments with
parking lots, buildings, signs, and other vehicles. During
experiments, we record the perspective of our victim vehicle
as it performs usual actions (driving forward along the
road, turning, parking, and reversing) and measure how the
perception pipeline responds to the perturbation patterns.

The attacker can use one of two strategies for projecting
perturbations, illustrated in Appendix Figure 15. First, the
attacker can carry the projector and manually point it at sur-
faces the victim can see (Figure 15-a). Otherwise, the attacker
can mount the projector onto a vehicle to follow the victim,
continuously perturbing the environment (Figure 15-b).

Table 3 compares the average/max latencies from real-
world attacks with benign latencies averaged over the unmod-
ified BDD100K dataset. While not a perfect baseline due to
distribution differences, benign latencies offer a good figure
to estimate relative latency increase due to attack. Similar
to our digital attacks, we find that the greatest observed
latency for RTX GPUs is on the RTX 2080 Ti, and the
greatest overall latency is observed on the Jetson Nano.
Interestingly, our real-world attacks achieve higher latencies
than digital attacks, having between 20% (RTX 3070) and
97.37% (RTX 2080 Ti) higher maximum latencies depending
on hardware. We note that higher the ROI-L experienced
under digital DETSTORM attacks, the higher the increase
in max observed latency was in real world experiments,
once again highlighting the importance of memory access
efficiency in mitigating latency.

Figures 4-b/c demonstrate two examples from our real
world attacks. In Figure 4-b, the victim is taking a right
turn into a driveway, while the attacker projects perturbation
patterns on both the left and right sides of the wall, as well
as on the sign. A large amount of objects appear on the
right side of the wall, effecting the attack. The attacker aims
to have perception freeze mid-turn, causing the victim to
collide head on with the corner of the wall. In Figure 4-c,
the attacker projects noise onto a wall as the victim comes
in to park, creating a large amount of objects on the left and
right garage doors. The attacker aims to have perception
freeze as the victim pulls in, causing it to fail to come to a
stop and collide with the wall. Although we do not evaluate
the collisions in the real world for safety reasons, we discuss
the requirements for such collisions to occur in Section 7.
Latency Per Perception Module. Although DETSTORM

(a) Object Creation [36] (b) Cooling-Shrinking [54]

Figure 6: Perturbations generated on YOLOv5s and applied
to YOLOv5m showing different attack effects.

targets the entire camera-based perception pipeline, OD,
NMS, and OT each respond differently to the latency attack.
Figure 5-a breaks down the percentage of total latency (when
attacked by DETSTORM in simulated physical and real-world
experiments) that each module of perception represents.
Overall, OT makes up the most significant portion of total
latency time, representing 42% of total latency on average.
NMS is also significant, representing 41% of the total
latency time on average. Finally, object detection represents
the smallest amount of latency on average, only 17%. This
indicates that improvements in NMS and OT processing
speeds are the most critical to mitigate latency effects
compared to improvements in OD processing speeds.

Figure 5-b plots the increase in ROI-L for each
perception module during our digital experiments, as a
function of ROI-O. We see that for low ROI-O values,
detection can have a higher latency than tracking and NMS.
However, as the number of created objects increases, the
latency increase for both OT and NMS increases rapidly due
to their O(n2) to O(n3) runtime complexity. Meanwhile,
the growth for OD is more linear.

6.3. Transferability to other Models

In previous sections, we evaluated DETSTORM on
YOLOv5s, vanilla NMS, and SORT tracking. In this section,
we evaluate how the attack performs when the victim uses
different object detectors, NMS algorithms, and trackers.
OD Algorithms. We tested generating/applying perturbation
patterns on YOLOv4 and YOLOv3 to evaluate transferability
between completely different OD models/weights. To
evaluate transferability between similar OD models with
different weights, we conducted the same evaluation on five
different YOLOv5 variations (n, s, m, l, and x). We detail
the differences in YOLO architecture in Appendix B. We
found that latency effects do not transfer between models,
i.e., perturbations generated via the YOLOv5s model will
not create spurious objects for YOLOv5n, YOLOv3, or any
other models, indicating that the creation effect is highly
sensitive to the model architecture and weights. However, we
found two consistent effects when applying attacks generated
on one model to another. Firstly, 16% of cross-model
perturbations cause object creation, where five or fewer
objects are created somewhere in the image (Figure 6-a).
These are artifacts of our mass creation process, and although
it is not enough to cause a latency effect, it can cause other
issues, e.g., vehicle stoppages, as evaluated in previous



Table 4: The percentage of created objects created by
DETSTORM and Phantom Sponges that remain unfiltered
under our three evaluated NMS methods.

Vanilla DIoU [59] Confluence [45]
DETSTORM 100% 100% 100%
Phantom Sponges [44] 100% 79.26% 67.64%

Table 5: Performance of DETSTORM to other object trackers
(relative to SORT [5])

StrongSort++ [16] OC-SORT [8] SiamMOT [47]
ROI-O% 100% 100% 100%
ROI-L%† 937.42% ↑ 77.16% ↓ 424.28% ↑

† Based on performance on RTX 3080.

work [36]. Second, 63% of transferred perturbations cause
cooling shrinking [54], where objects and their trackers are
suppressed throughout the video feed (Figure 6-b). Finally,
21% of transferred perturbations cause object creation at
extremely low confidence (< 0.1), and thus do not affect
the perception pipeline unless Tconf is set sufficiently low.

Previous work [44], [49] has demonstrated that ensemble
training can increase latency attack transferability across
models. In ensemble training, instead of using a single object
detection model during the propagation process in perturba-
tion generation (Section 5.2.1), a different model is selected at
random each time, which enforces loss function over each of
the selected models. Though ensemble training cannot trans-
fer perturbations to models that the attacker does not include
in the training process, it is an option when multiple different
known and accessible models may be used by the victim.
NMS Algorithms. In this paper, we consider the different
types of NMS algorithms that can be deployed by the
victim. We evaluate DETSTORM’s transferability to these
NMS algorithms by measuring the number of objects that
are filtered out by the DIoU and Confluence NMS algorithms.
Additionally, we evaluate the effectiveness of our loss
function’s design by comparing DETSTORM against Phantom
Sponges, which is only designed for vanilla NMS.

Table 4 reports the percentage of created objects that
remain unfiltered by each NMS method. As designed,
DETSTORM does not suffer any loss of performance when
evaluated under DIoU NMS or Confluence instead of Vanilla
NMS. However, Phantom Sponges, designed only against
vanilla NMS, has an average of 20.74% of its detections
removed by DIoU and 32.36% of its detections removed
by Confluence. Because distance metrics are not considered
by the Phantom Sponges loss function, it tends to leave a
larger gap between bounding boxes than DETSTORM, which
makes it less transferable to DIoU and Confluence.
Object Tracking Algorithms. In addition to the common
SORT tracker, we examine how DETSTORM performs under
two different variations of SORT: (1) StrongSORT++ [16],
one of the most accurate (by Multiple Object Tracking Accu-
racy [3]) tracking-by-association approaches, which improves
upon SORT by using two unique algorithms to extract addi-
tional spatio-temporal information from objects, and (2) OC-
SORT [8], one of the fastest two-stage MOT models which
prevents tracking errors from accumulating by correcting un-
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Figure 7: DETSTORM attack effectiveness under different
victim-set thresholds. The victim cannot tune their thresholds
to evade latency effects without either reducing perception
accuracy or creating other attack effects.

tracked detections based on their previous behavior. Although
they still include the O(nm2) Hungarian Matching phase of
SORT, they can potentially reduce additional latency by elim-
inating erroneous trackers in m. Additionally, we evaluate
DETSTORM under SiamMOT [47], a state-of-the-art multiple
object tracker which uses feature embeddings in a Siamese
neural network to associate objects between frames. By elim-
inating the presence of trackers entirely, complexity can drop
between O(n) and O(n2), depending on the input data [47].

Table 5 compares the ROI-O and ROI-L of each evaluated
object tracker with the results achieved on SORT. A value
of 100% indicates that the same value as SORT is achieved,
a value > 100% indicates a larger value than SORT, and
< 100% indicates a smaller value is achieved. All three
trackers achieve the exact same ROI-O as with SORT,
indicating that none of our created objects are removed by any
trackers.However, the total measured latency changes when
different trackers are used. SiamMOT and StrongSORT++
both process bounding boxes much slower than SORT,
resulting in a 4-9 times increase in latency, respectively,
which means a degraded performance. Much of the latency
increase here comes from the feature extraction phase of both
approaches, rather than the association phase, showing that a
decrease in time complexity for association at the expense of
more detection time is not always a good tradeoff. Meanwhile,
OC-SORT gets a slight improvement over SORT, decreasing
overall latency by 22.84% due to faster processing speeds dur-
ing tracking. This proves that improvements in object tracking
speeds can mitigate latency effects for the entire pipeline.

6.4. Attack Parameters

Proposal Number Threshold. A safety-critical system
must withstand worst case scenarios to prevent failures.
The proposal threshold Tprop is typically set to 30, 000 [41],
accommodating potentially large detections in various general
detection scenarios. However, the “worst case scenario”
varies by applications. For example, detectors for cars,
pedestrians, and dynamic objects may favor a high Tprop. Con-
versely, detectors for low-frequency objects like traffic signs
and lights may suffice with a lower threshold (e.g., 1000).

Figure 7-a charts the impact of different Tprop values on
the observed latency (in seconds) across our hardware setups.
Latency effects are stable between a Tprop of 5, 000 and
20, 000, before slowly increasing as Tprop approaches 30, 000.
General detectors handling multiple object types may use



these values for Tprop, and they would be unable to tune Tprop
to mitigate latency effects. However, latency effects begin to
drop off rapidly at Tprop = 3, 000 for all hardware. This im-
plies that specialized detectors with few expected objects may
not experience latency effects. However, by creating at least
Tprop objects with a T ′

conf greater than or equal to the highest
confidence benign object, DETSTORM would be able to com-
pletely replace all of the detected objects with adversarially
crafted ones, which could cause various effects (e.g., a failure
to stop due to the original traffic light being removed and
replaced with hundreds of speed limit signs). The smaller that
Tprop is set to, the easier it is for an attacker to achieve this
effect, making it infeasible to use Tprop tuning as a defense.
Confidence Score Threshold. The confidence score thresh-
old Tconf is set based on the expected accuracy of an object
detector during its usage. Setting Tconf too low increases the
risk of false positives, while setting it too high filters out
both false positives and benign detections.

Figure 7-b (blue) illustrates the average ROI-O of
DETSTORM under different Tconf values. Lower thresholds
result in higher ROI-O, as more lower-confidence objects
survive filtering. However, at Tconf = 0.4, we begin to lose
33% of benign detections along with our adversarial ones.
At Tconf = 0.5, 71% of benign detections are lost, and at
Tconf = 0.6, both benign and adversarial detections are
wiped out completely, dropping the ROI-O to 1. Nonetheless,
setting the attacker-desired confidence T ′

conf higher allows
overcoming any threshold, rendering Tconf tuning insufficient
to mitigate DETSTORM’s latency attacks.
Similarity Threshold. The similarity threshold TSim, ranging
from 0 to 1, exists for all considered NMS approaches, and
governs whether two bounding boxes are treated as part
of the same object during NMS. For vanilla NMS, TSim is
the IoU threshold; for DIoU, the distance threshold; and
for Confluence, the confidence-weighted Manhattan distance
threshold. Setting TSim too low hurts benign performance,
as the NMS will become more aggressive and attempt to
combine separate objects into one bounding box. However,
setting TSim too high can lead to more false positives, as
duplicate objects normally filtered by NMS are no longer
removed. Typically, TSim is set between 0.45 and 0.5 for
general detection purposes. [41], [46], [59].

Figure 7-b (red) shows the ROI-O of DETSTORM

under different values for TSim. Because we optimize our
perturbations for all three NMS approaches, they perform the
same for a given TSim value. We find that for TSim = 0.1 and
0.2, we still achieve between 2.41 and 3.41 ROI-O, although
the NMS aggressively filters any of our created boxes
that were not properly minimized. At TSim = 0.3, most of
our created bounding boxes have already been minimized
to be considered unique at this threshold. Therefore, for
TSim > 0.3, performance gain is minimal, with a stable ROI-
O achieved. Compared to confidence and proposal thresholds,
TSim has a less pronounced effect on latency effects, and
the victim cannot tune this parameter to evade the attack.
Attack Surface Utilization. The availability of attack
surfaces profoundly influences DETSTORM’s success as a
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Figure 8: How the utilization of available perturbable surfaces
affects DETSTORM’s ROI-O (left) and Latency (averaged over
all hardware, right).

physically realizable attack. Figure 8 plots how the utilization
of attack surfaces affects success, with Figure 8-a showing
how the ROI-O increases along with attack zone utilization
during digital experiments, while Figure 8-b shows how
observed latency changes with respect to attack surface
utilization for all experiments, including the real world
ones. The number of successfully created objects grows
exponentially with a utilizable attack surface. At 0% surface
utilization, no effect is achieved, whereas the number of
created objects is maximized when 100% of the environment
is usable (e.g. an entire wall covering the victim’s view is
available to perturb). However, the number of created objects
only reaches 20% of its peak when 82% of the environment is
available to perturb, and 50% when 97% of the environment
is available. This exponential growth can be attributed to
the topology of the attack surfaces: at lower attack surface
utilizations, different patterns must be spread across smaller
objects, whereas at utilizations closer to 100%, the attack
is able to utilize a single pattern for a single, contiguous
surface. A similar tend is highlighted by Figure 8-b, which
shows that latency effects start to sharply increase at a 60%
surface utilization rate. For comparison, projector-based
tracker hijacking attacks against object tracking typically
require only 30% of the environment to be available to
perturb [35]. Therefore, to maximize latency effects, an
attacker must choose an area visible to targeted victims that
has the most available surface to project perturbations onto.
Perturbation Amount. For each attack, we measure the
maximum perturbation, representing the most significant
modification to the environment necessary for the attack.
While it does not affect our success metrics, it is important
to evaluate as it relates to two essential factors. First, stealth-
iness: higher maximum perturbations make the attack more
conspicuous to bystanders and the victim. Second, projector
cost: brighter perturbations necessitate more powerful (and
expensive) projectors, especially in well-lit environments).

DETSTORM, on average, requires a maximum perturbation
81.43% ± 5.62% brighter than the surroundings, with the
brightest perturbation 98.82% greater luminance. For
reference, this is 13.9 times brighter than the maximum
perturbations required by projector-based tracker-hijacking
attacks [35], but 0.8 times the brightness required by
projector-based misclassification attacks [33]. Maximum
perturbation is also highly dependent on the environment,
with darker environments requiring a lower value. For
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Figure 9: Rate of increase in number of final objects for the
same perturbation pattern at different camera distances and
angles, relative to the perturbed surface.

example, for night-time cases from our real-world
experiments, the maximum perturbation is 68.63%.
Camera Angle and Distance. We perform an ablation
study to quantify the effect of camera distance and angles,
relative to the perturbed surface, on our attack. First, using
a flat wall in an empty area, we used a stationary projector
to display a DETSTORM pattern on the wall from 3 meters
away. Then, in camera distance increments of 1 meter and
22.5◦on either side, we captured 3 second stationary videos
centered on the wall. We repeated this with the projector
turned off for baseline measurements. Camera settings
were kept constant throughout the experiments, and the
perturbation pattern was not transformed or altered in any
way. Although we only take measurements up to 3 meters
away due to environmental space constraints, we note that
our real world experiments involve distances up to 8 meters.

With these data points, we construct a heatmap of the
average ROI-O for each distance and angle setting, illustrated
in Figure 9. We see that at close distances and tight angles
closer to zero, our attack has no effect (i.e., ROI-O is 1), as
the camera is close enough for imperfections in projector
resolution to undermine the perturbation pattern. Additionally,
at some angles, the camera is unable to capture the entire
perturbed wall at once. At further distances and wider angles,
the maximum effect of the attack is reached, as the camera is
able to capture the entire perturbation pattern in full view with
minimized influence from projector resolution. In general,
an attacker can increase the effect of the attack by ensuring
that the full projector pattern is visible to the victim.

7. Case Study

To safely examine the potential physical consequence
of our attack on a real system, we perform a case study
within the CARLA simulator [15]. Unlike our exhaustive
evaluation in Section 6, this section is intended to simply
show a few examples of how latency attacks may be
employed against a full autonomous driving system stack.
We assess our attacks using Autoware [27], an open-source
software stack for self-driving vehicles, leveraging both
camera and LiDAR-based perception. Although several
autonomous driving systems, such as Openpilot [13], reason
purely based on camera input, we select Autoware because
it is stated to be fully autonomous (SAE Level 4).

Our case studies are illustrated in Figure 10, where a
latency attack is performed when the vehicle crosses an
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Figure 10: When a latency effect of ≥ 0.27 secs is achieved,
Autoware’s camera-based perception pipeline can no longer
respond to the environment, resulting either in unsafe decel-
eration when LiDAR detects vehicle (left), or collision when
the LiDAR is unable to detect the object (right).

intersection blocked by a stopped vehicle. From the side of
the road, an attacker projects DETSTORM perturbations onto
the stopped vehicle. We experiment with several different
DETSTORM attacks that yield different latency patterns.

For our specific scenario environment, we find physical
consequences happen 100% of the time when a latency effect
greater than or equal to 0.27 seconds is achieved, which is
well within our achieved results in Section 6.2. Specifically,
in all cases where this latency is achieved, camera-based
perception freezes and is unable to percieve the obstacle
in the intersection. In clear weather conditions, the LiDAR
sensor detects the vehicle at the last moment, forcing a sud-
den, unsafe brake (Figure 10-a), decelerating the vehicle at
26.2ft/s2, which is almost the double threshold for safe brak-
ing defined by the US Federal Highway Administration [18].
In addition to being an unsafe maneuver, such a brake would
induce skids or poor traction on wet, icy, or dusty roads.
Meanwhile, in rainy conditions (Figure 10-b), the LiDAR is
unable to detect the obstacle at all due to sensor noise, leading
to a collision 100% of the time. Similar LiDAR noise can be
created by other conditions, including fog, snow, dust/sand,
other LiDARs, and intense vibration. These examples confirm
that latency attacks can induce physical consequences for AS.

Beyond our examples, the actual latency effect required to
cause a collision depends on two factors: actuation delay and
time to collision. Actuation delay is entirely dependent on the
autonomous driving system, and represents the normal time
between when an obstacle is detected and when the system
can respond to the obstacle. The higher a system’s actuation
delay is, the less latency is needed to cause a collision. Mean-
while, time to collision (TTC) represents the time remaining
for a vehicle to brake before hitting an obstacle, in the form:

TTC(veh, obs) =
posveh − posobs
v(veh)− v(obs)

(15)

where posveh and posobs are the positions of the vehicle
and the obstacle, and v is velocity. Any induced latency
≥ TTC will create an unavoidable collision.

8. Limitations and Discussion

Mitigating Factors. Our evaluation highlights the importance
of GPU throughput and memory access efficiency, showing
that GPUs that are weaker in both areas will suffer much
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Figure 11: DETSTORM perturbations create appearance
features similar to those of real objects. Therefore, it
implicitly evades appearance-based matching approaches,
e.g., DeepSORT [51].

greater latency effects. Unfortunately, current autonomous
system hardware is typically geared towards embedded, low-
memory solutions [39], which our evaluation shows is one of
the most affected types of hardware. To fully mitigate latency
attacks at the hardware level in resource-limited systems,
further advances in hardware efficiency are essential.

Additionally, latency effects are dependent on the avail-
ability of the attack surface. Based on our experiments, at
least 50% of the environment must be usable as an attack
surface to create a significant increase in latency, with latency
increasing exponentially from there. This means that attackers
must carefully choose environments to maximize the amount
of perturbable surfaces. Consequently, victims in urban areas
with dense architecture may be more vulnerable to latency
attacks compared to victims in rural areas with wide open
spaces. Additionally, the consequence of malfunction in
urban areas is generally more severe than in rural areas.
Unique Perception Pipelines. We design DETSTORM against
the widespread camera-based perception pipeline, with
distinct OD, NMS, and OT components. These pipelines
currently exist in several domains, including autonomous
driving, autonomous surveillance, and UAVs. Although we
primarily demonstrate latency in the autonomous vehicle
domain, our approach is domain-agnostic by deisgn, with our
119 perturbable classes existing in multiple domains. Porting
DETSTORM to other domains requires minimal changes.
The primary change would be prioritizing domain-specific
prevalent classes in the attacker dataset.

Our evaluation shows that during an attack, the primary
sources of observed latency come from NMS and OT
components. However, recent work is exploring transformer-
based end-to-end autonomous driving [23], [25], which
performs all autonomous driving functions from perception to
planning on a single neural network. Instead of distinct OD,
NMS, and OT components, a continuous stream of encoders
and decoders is used to accomplish tracking, mapping, and
motion planning. This removes the need for the additional
graph optimization or motion/appearance modeling required
in NMS and OT. Given the recency of the work, the
potential effect of latency attacks on unified autonomous

(a) (b)

Figure 12: Latency attacks against ODT implicitly affect
YOLACT semantic segmentation [7], causing misclassifica-
tions and creating phantom segments.

driving is unclear, and we will explore this in future work.

9. Countermeasures

Naive Defenses. To increase the robustness of detection
against our created perturbations, a victim may employ
adversarial training, where the OD model is retrained on
DETSTORM attacks to recognize and resist the perturbation
patterns. However, this does not alter the model’s fundamen-
tal vulnerabilities. Therefore, an attacker can easily evade an
adversarially trained model by re-generating the perturbation
dictionary on the new model and applying the new patterns.
Yet, we find 3 denoising techniques (median/Gaussian
blur and bilateral filter) that are able to remove 50%+ of
adversarially created objects while maintaining 70%+ of
benign detections (Appendix C). However, by applying these
techniques to the perturbation pattern P in our loss function,
we are able to evade the applied denoising methods 100% of
the time, making it unsuitable to use as a standalone defense.
Appearance-based matching. A victim may attempt to
employ an appearance-based matching approach such as
DeepSORT [51] to filter out created objects. Appearance-
based matching ensures that, for a given bounding box, the
features inside that bounding box correspond to the reported
class of the object. Unfortunately, as illustrated in Figure 11,
even though no real object is enclosed by the DETSTORM-
created bounding boxes, the extracted features of the pertur-
bation pattern resemble the reported class for each object
(e.g., for a created pedestrian bounding box, appearance-
based matching will extract the features of a pedestrian from
the perturbation pattern). Therefore, DETSTORM implicitly
evades appearance-based detection. Additionally, appearance-
based matching approaches carry heavy runtime overheads
compared to other types of tracking [16], [51], which makes
them counterproductive in mitigating latency effects.
Segmentation. A victim may attempt to filter out latency
effects by constraining bounding boxes via segmentation. For
example, a segmented building should not have a large num-
ber of vehicle/pedestrian bounding boxes present across its
surface. However, we have found that latency attacks, includ-
ing our approach and Phantom Sponges, implicitly affect seg-
mentation approaches, including YolACT, causing instance



misclassifications and creating phantom segment areas (Fig-
ure 12). Additionally, previous work have shown that white
box attacks can arbitrarily modify instance segmentation
results [48], [57]. Due to our implicit black box attack effects
and known white box attack effects, applying segmentation
is not enough to defend against DETSTORM’s latency effects.
Advanced Defenses. A victim may be interested in applying
certified robustness to their models. Certified robustness
defenses give a formal mathematical proof such that within
a specified range of perturbations, the performance of the
model will remain above a predefined threshold. However,
these defenses are typically applied to pure image-based
classifiers [52], as the complex mathematical operations
involved make them difficult to scale to larger attack surfaces.
Further, certified robustness can be evaded by increasing the
intensity of perturbations to greater than the certified amount.
Although this may decrease the attacker’s stealthiness and
increase the required cost of the projector, it will not mitigate
latency effects. Yet, existing general OD defenses may be
applied to protect the victim. To test the efficacy of this,
we apply the PercepGuard [33] integrity defense to our case
studies in Section 7. PercepGuard ensures that all bounding
boxes in a frame are spatio-temporally consistent with their
reported class. We do not optimize our created bounding
boxes for spatio-temporal consistency; thus, PercepGuard
is able to detect our attack. However, it is only able to run
after the object detection pipeline finishes processing the
0.27 second latency. Thus, by the time PercepGuard detects
the attack, it is already too late to avoid a collision. This
vulnerability is shared by other spatiotemporal consistency
based defenses, such as PhySense [56], as their threat models
focus on integrity attacks rather than availability ones.
Overall, traditional integrity defenses requiring perception
results to operate are not sufficient to evade latency attacks.
Quantization and Acceleration. On supported hardware, a
victim may implement their model in an INT8 format and use
TensorRT to accelerate their inference times in object detec-
tion [22]. To test the effectiveness of this against DETSTORM,
we rebuilt our YOLOV5s model using TensorRTx [53] and
serialized it in INT8 format, integrating it with NMS and
OT. With this model, we achieved a recall and precision
within 0.5% of the original model, and decreased the total
runtime of ODT by 7.6% in benign conditions. However,
when attacked by DETSTORM, our accelerated ODT pipeline
is 8.1% slower than the original pipeline. We note that
an average of 83% of latency comes from NMS and OT
(Section 6.2), which contain non-differentiable comparisons
that cannot be quantized or accelerated. Additionally, the
reduced precision of INT8 models can create a cumulatively
increasing overlap in detection bounds, increasing the strain
on the later parts of the perception pipeline.
Sensor Fusion/Other Sensors. We focus on camera-based
perception. In certain domains (e.g., surveillance and certain
autonomous driving software [13]), only camera sensors are
used for perception, whereas in other domains, additional
sensors such as LiDAR and radar may be used. However,
our Autoware case study shows that when employing

multiple sensors, the victim may still experience unsafe
physical consequences (e.g., unsafe braking) as long as
the camera-based perception is compromised. Latency
attacks may still be conducted against other sensors
(e.g., LiDAR [30]) in tandem with a DETSTORM attack
against the camera, and ambient noise such as rain and
fog (for LiDAR) or electromagnetic interference (for radar)
can degrade the performance of these sensors significantly,
deepening consequences for the attacked victim.
Robust Perception against Latency. Based on our evalua-
tion, we believe that the best way to mitigate latency effects is
to improve the time complexity of both OT and NMS. Current
approaches for both require between O(n2) and O(n3),
which is the root cause of latency. If the complexity for both
could be optimized to O(log(n)) or smaller, it is likely that
latency effects will be reduced. Once latency effects are miti-
gated, existing integrity-based defenses can be used to handle
the mass creation effect and avoid physical consequences.

10. Conclusions

We present DETSTORM, a new physically-launchable
latency attack against camera-based perception pipelines.
DETSTORM causes latency effects by creating a large number
of objects on physically perturbable surfaces, slowing NMS
and OT to delay final perception results. In order to maximize
the number of objects created, DETSTORM takes a greedy ap-
proach and maximizes the amount of created objects for each
“zone” in the image containing a single, distinct class. We
generated the perturbations using a new loss function that op-
timizes 4 separate objectives, generalizing attacks to several
NMS approaches with no loss in attack effectiveness. We eval-
uated the effectiveness of our attack on both BDD100K and
real-world experiments, and measured transferability to other
perception algorithms and efficacy under different attack
parameters. DETSTORM is able to cause a 500% to 2000%
increase to the number of objects processed by camera-based
perception, delaying results by up to 8.1 seconds and causing
physical consequences for systems like Autoware.
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(a) (b)
Figure 13: Phantom Sponge “universal” perturbations created
on primarily dark-colored data will only affect dark surfaces.

Onboard Camera
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Sensor Board GPU/CPU/RAM

Figure 14: Our real-world DataSpeed autonomous vehicle
used for experiments.

Appendix A.
Zone Classes

Most Frequent Zones. We used 119 perturbable classes
extracted from the BDD100K dataset to compute individual
patches on. The 10 most common perturbable zones, by
percentage of total appearances, are represented in Table 6.
As can be expected, objects like roads, cars, and buildings
make up a large portion, together accounting for over a
quarter of the total perturbable zones in BDD100K. Other
traffic objects, such as signboards, walls, and fences, are
also in the top 10. Pedestrians are the seventh most common
class, representing just over 4% of total perturbable zones.

Table 6: Frequency of top 10 classes extracted from the
BDD100K dataset.

Class Frequency (%)
Road 9.7516%
Car 9.7506%

Building 9.4380%
Sidewalk 8.007%
Signboard 6.9074%

Wall 6.5573%
Person 4.147%
Fence 4.0415%

Ceiling 3.7387%
Pole 3.7071%
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https://www.projectorcentral.com/Optoma-LV130.html
https://github.com/ashep29/confluence
https://github.com/ashep29/confluence
https://github.com/wang-xinyu/tensorrtx
https://github.com/Zzh-tju/DIoU-darknet


Table 7: Attack performance of Phantom Sponges [44] during
simulated physical experiments. DETSTORM outperforms
Phantom Sponges in all areas, causing between 55.36% and
410.29% more latency depending on hardware.

Hardware ROI-O
(Avg/Max)

ROI-L
(Avg/Max) Max Latency (s)

Jetson Nano 33.02 / 42.57 2.83
Jetson TX2 30.28 / 35 0.95

RTX 2080 Ti 4.87 / 20.43 11.13 / 14.87 0.44
RTX 3070 1.12 / 2.12 0.36
RTX 3080 5.08 / 50.65 0.18
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Attack Surface Attack Surface

Victim 
Vehicle

(a) Human-carried
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(b) Vehicle-mounted

Figure 15: To effect perturbations, an attacker can either (a)
carry the projector on foot, adjusting to match the victim’s
visible surfaces, or (b) mount a projector to a vehicle and
follow alongside the victim.

Appendix B.
YOLO Architectures

The YOLO (You Only Look Once) model [41] represents
a pivotal advancement in the field of single-stage object
detection, offering a unique approach that contrasts with tra-
ditional two-stage detectors. YOLO frames object detection
as a single regression problem, directly mapping from image
pixels to bounding box coordinates and class probabilities.
This holistic approach allows YOLO to achieve remarkable
speed and efficiency, making it highly suitable for real-time
applications. Since its introduction, YOLO has undergone
several iterations, each improving upon its predecessor in
terms of accuracy, speed, and model complexity.

YOLOv3 [42] introduced several enhancements over its
predecessors, including the use of three different scales to
detect small, medium, and large objects. It also incorporated
the use of logistic regression for ‘objectness’ prediction,
making it more accurate in distinguishing foreground objects
from the background. Additionally, YOLOv3 employed a
deeper and more complex architecture based on Darknet-53,
significantly improving its ability to recognize a wide variety
of objects.

YOLOv4 [6] further refined the model’s performance and
efficiency, making it more accessible for use on a broader
range of hardware. It introduced several new concepts, such
as the use of the CSPDarknet53 backbone for reducing
model complexity while maintaining high performance, and
the integration of spatial pyramid pooling and PANet for
more effective feature aggregation from different levels of
the network. YOLOv4 also emphasized the importance of
data augmentation techniques like CutMix and Mosaic, along
with the use of advanced optimization methods such as CIOU
loss, to enhance the model’s accuracy and robustness.

YOLOv5 [26], developed and open-sourced by Ultralyt-
ics, marks a significant milestone in the YOLO evolution,
focusing on simplicity, speed, and performance. It offers
various model sizes (YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x) to cater to different computational and accuracy
needs. These variants differ primarily in their depth and
width, affecting their speed and accuracy trade-offs.

Appendix C.
Denoising Defense Parameters

We attempted 7 approaches to denoising: inverting pixel
values, mean/median/gaussian blurring, contrast and bright-
ness alterations, bilateral filtering, and Fast non-local means
denoising [31]. To remove created objects from a non-
adaptive attacker, we found the following methods to be
most effective: (1) a median blur with a kernel size of 3, (2)
gaussian blur with a kernel size of (7, 3), and (3) a bilateral
filter with a pixel diameter of 5, σcolor of 130 and σspace

of 90. However, if we apply these same values to the loss
function of DETSTORM’s perturbation generation, denoising
is no longer effective.



Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

The paper introduces a novel physical latency attack on
camera-based object detection and tracking in autonomous
systems. This attack exploits the high computational com-
plexity of non-maximum suppression and object tracking
algorithms by generating a large number of fake objects on
perturbable surfaces, which significantly increases percep-
tion latency. It optimizes perturbations to maximize object
generation and dynamically adapts to environmental changes.
Evaluated through simulations and real-world experiments,
the attack effectively delays perception and increases object
counts across various object detection and tracking models
and hardware platforms.

D.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

D.3. Reasons for Acceptance

1) The paper identifies a novel, physically realizable
attack that can delay perception in camera-based
object detection and tracking systems.

2) The paper addresses the challenges of real-time
computation and the transferability of patch-based
latency attacks while adapting to dynamic real-world
environments.

D.4. Noteworthy Concerns

1) Reviewers questioned the extent to which the pro-
posed attack applies to other object detection models,
datasets, environments, and real-world conditions.
While the authors defer evaluation on additional
models to future work, they argue that their ex-
periments on the BDD100K dataset and real-world
scenarios demonstrate the attack’s generalizability.

2) One reviewer raised concerns about evaluating the
attack on low-power hardware platforms, question-
ing its relevance to high-end systems. The authors
justify their choice by emphasizing that embedded
platforms like the Jetson Nano/TX2 are widely used
in low-cost autonomous vehicles and are crucial for
assessing attacks on resource-constrained systems.

Appendix E.
Response to the Meta-Review

In the following, we detail our response to each of the
noteworthy concerns.

1) In this paper, we focused on YOLOv5 due to
its prevalence and superior real-time performance.
Because latency effects primarily stem from the
O(n2) to O(n3) bottlenecks in NMS and OT, OD
architectures are less important to our approach.
We defer evaluation on additional models to future
work due to the extensive amount of time required to
generate perturbation dictionaries on a new model;
initial experiments in attacking Faster-RCNN show
3.32× higher average ROI-L despite Faster-RCNN’s
higher baseline accuracy.

2) We split our hardware into two camps. Our embed-
ded platforms like our Jetson devices are essential
for examining the effect of latency in low-cost
AVs or resource-constrained autonomous systems,
while our more powerful hardware such as our
RTX devices represent more powerful autonomous
vehicle hardware, including the 2080 Ti mounted
to our DataSpeed autonomous vehicle. Extremely
advanced hardware (e.g., RTX 5090) or specialized
AD hardware (e.g., Nvidia DRIVE) exist that may
experience different ROI-L and max latencies. How-
ever, we consider these extreme high-performance
devices to be outside the scope of our work, which
is meant to be a general look at latency attacks
performed in physical environments.
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